Chopstick technique for nucleus removal in an impending dropped nucleus

We agree with Lal and coauthors\(^1\) that despite attempts to prevent posterior capsule tears and a dropped nucleus, they do occasionally occur. The authors report the use of a Sinskey hook introduced through the pars plana to support the hanging nucleus and remove it through an enlarged wound. Although the article is well written, we would like the authors to clarify some aspects of the technique.

Lal and coauthors introduced the hook through a temporal pars plana port to support an inferonasally unsupported nucleus in a case of clear corneal temporal phacoemulsification. We would like to know the preferred site of the pars plana port. Should it be to the left of the main wound, so the hook held in the left hand can be introduced easily and used to support the nucleus, or should it be guided by the position of the unsupported nucleus for optimal support?

The authors advise using the pars plana Sinskey hook with the tip up to support the nucleus. When held by the handle, the Sinskey hook points down. If one has to make the tip point up, the handle has to be upside down, as shown in Figure 1. This position can be cumbersome and might make it difficult to manipulate the nucleus, especially when operating in the right eye through a superior corneal tunnel. This problem can be overcome by using the pars plana Sinskey hook with the tip down to support the nucleus and the tip of a second Sinskey through the clear corneal incision to bury in the nucleus. Another option is to modify the Sinskey hook so the tip points up along with the handle. The same configuration and function can be achieved by modifying a 24- or 26-gauge ½-inch disposable needle mounted on a tuberculin syringe. The tip is sharp and can be easily buried in the nucleus. Care should be taken so the sharp tip does not damage intraocular structures.

We think this is a useful technique. With certain refinements, it can be made more useful for phacoemulsification surgeons, especially beginning surgeons.

---

Effect of brimonidine on pupil diameter

We read with interest the articles by Thordsen and coauthors\(^1\) and Kesler and coauthors\(^2\) regarding the effect of brimonidine tartrate on pupil diameter. Brimonidine is a selective \(\alpha_2\) agonist, and stimulation of \(\alpha_2\) receptors on presynaptic sympathetic nerve terminals decreases the production, storage, and release of norepinephrine. Unsurprisingly, brimonidine in both 0.2% and 0.15% concentrations will blunt the normal sympathetically mediated pupil dilation that occurs when environmental illumination is reduced.

Thordsen and coauthors and Kesler and coauthors propose that brimonidine may palliate low-light vision disturbances after refractive surgery in patients with effective optical zones smaller than their dark-adapted pupils. Thordsen and coauthors further suggest that the response to brimonidine could be incorporated into the preoperative assessment and consent process so individuals with large pupils could be informed that “they may require drops postoperatively to help minimize symptoms.”

Tonic reduction of norepinephrine levels in the synaptic junction leads to up-regulation of \(\alpha_2\) receptors on the iris dilator muscle. In a study of 10 normal subjects, Brown and coauthors\(^3\) showed that once-daily dosing with brimonidine 0.15% initially blocked the pupil dark response, but this effect was blunted within...
5 to 11 days (tachyphylaxis); when the medication was discontinued, rebound mydriasis (dark-adapted pupil larger than at baseline) resulted when up-regulated α1 receptors were exposed to normal levels of norepinephrine (Figure 1). Tachyphylaxis was seen in 100% of subjects who showed an initial response. One of us (S.M.B.) performed the same trial on herself using brimonidine 0.2% and experienced tachyphylaxis within 3 days, followed by rebound mydriasis. Rebound mydriasis could be functionally devastating to refractive surgery patients who suffer from disruptive levels of glare disability.

Since brimonidine cannot be used chronically for the relief of low-light visual symptoms, its usefulness in the preoperative-assessment and informed-consent process for refractive surgery is uncertain. Patients should not be given to understand that brimonidine will reliably and consistently reduce their dark-adapted pupil diameters when needed if such a need might arise on a daily or frequent basis.

SANDRA M. BROWN, MD
Concord, North Carolina, USA

ARSHAD M. KHANANI, MD
Lubbock, Texas, USA

REFERENCES


Late ptosis after laser in situ keratomileusis

As mentioned by Cheng and coauthors,1 ptosis is sometimes observed after cataract surgery because of multiple factors. However, the development of ptosis after laser in situ keratomileusis (LASIK) is surprising. I would like to contribute a case report of a patient who had a possibly similar etiopathogenesis and clinical findings.

The patient had had bilateral LASIK at another clinic 1 year earlier. After 8 to 9 months, he experienced ptosis in the right eye. He then perceived that the ptosis partly resolved. When the patient presented to me, I observed a 2.0 mm partial ptosis (Figure 1). The levator function was normal, with 19.0 excursion. The patient had no ocular symptoms or signs other than ptosis and reported no systemic disorders.

HALIT OGUZ, MD
Sanliurfa, Turkey

REFERENCE